

Course E-Syllabus

1	Course title	Physical Chemistry III			
2	Course number	0303342			
•	Credit hours	3			
3	Contact hours (theory, practical)	45 (42, 0)			
4	Prerequisites/corequisites	Chem 341			
5	Program title	Bachelor of Science in Chemistry			
6	Program code	0303			
7	Awarding institution	The University of Joran			
8	School				
9	Department	Chemistry			
10	Level of course	3 rd year level			
11	Year of study and semester (s)	2020 summer			
12	Final Qualification				
13	Other department (s) involved in teaching the course	N/A			
14	Language of Instruction	English			
15	Teaching methodology	□Blended ⊠Online			
16	Electronic platform(s)	□Moodle ⊠Microsoft Teams □Skype □Zoom □Others			
17	Date of production/revision	07/18/2020			

18 Course Coordinator:

Name: Professor Firas Awwadi	
Office number:	
Phone number:	
Email:	
f.awwadi@ju.edu.jo	

19 Other instructors:

Name: Office number: Phone number: Email:			
Name: Office number: Phone number: Email:			

20 Course Description:

As stated in the approved study plan.

Physical chemistry III is the third semester of the three-semester physical chemistry sequence offered by the department of chemistry intended for undergraduates majoring in chemistry. In this semester we explore basic concepts and ideas of quantum mechanics, quantum chemistry, and atomic and molecular structure and spectroscopy.

The course covers basic principles of quantum chemistry; particle in a box system, simple harmonic motion; the rigid rotor; atomic and molecular structure; basic principles of vibrational, rotational, Raman, and electronic spectra of molecules; chemical bonding; molecular orbital theory and LCAO (linear combination of atomic orbitals) theory, and basics of statistical mechanics.

21 Course aims and outcomes:

A- Aims:

1. Develop a solid understanding of the fundamental principles of quantum chemistry.

2. Explain the fundamental concepts of and language of quantum chemistry.

3. Acquire a quantitative understanding of quantum chemistry, by both expressing concepts into mathematical relations, and by understanding physical concepts behind mathematical formulas. Furthermore, students will be able to derive important mathematical relations.

4. Promote problem-solving skills by applying different mathematical methods and techniques to the solution of relevant, but relatively complex, problems.

5. Appreciate the continuous interplay between experiment and theory in quantum chemistry.

B- Intended Learning Outcomes (ILOs): Upon successful completion of this course, students will be able to:

Upon successful completion of this course students will be able to ...

B1. Develop a solid understanding of the fundamental principles of quantum chemistry.

B2. Explain the fundamental concepts of and language of quantum chemistry.

B3. Acquire a quantitative understanding of quantum chemistry, by both expressing concepts into mathematical relations, and by understanding physical concepts behind mathematical formulas. Furthermore, students will be able to derive important mathematical relations.

B4. Promote problem-solving skills by applying different mathematical methods and techniques to the solution of relevant, but relatively complex, problems.

B5. Appreciate the continuous interplay between experiment and theory in quantum chemistry.

22. Topic Outline and Schedule:

Week	Lecture	Tonic	Teaching Methods	Evaluation	References
		Topic	*/platfor m	Methods**	

	1.1	Quantum Theory Classical Mechanics Failed to Describe Experiments on Atomic and Molecular Phenomena	MS-	HW and exams	See references
1	1.2	Classical Mechanics Failed to Describe Experiments on Atomic and Molecular Phenomena.			
	1.3	The Heisenberg Uncertainty Principle			
	1.4	The SchrÖdinger Equation.			
	1.5	Operators.			
	2.1	Particle in a One-Dimensional box.			
	2.2	Particle in a One-Dimensional box			
2	2.3	Particle in a Three-dimensional box.			
	2.4	Relation between Commutability and Precision of a Measurement.			
	2.5	Classical Harmonic Oscillator. Quantum Mechanical Harmonic Oscillator.			
	3.1	The Rigid Rotor. Angular Momentum.			
	3.2	The Rigid Rotor. Angular Momentum.			
3	3.3	Tunneling. And revision			
	3.4	The SchrÖdinger Equation for Hydrogen Atom. The Spectrum of Hydrogen Atom.			
	3.5	Eigenfunctions and Probability Densities for Hydrogenlike atoms.			
	4.1	Orbital Angular Momentum of the Hydrogenlike Atom.			
	4.2	Electron Spin.			
4	4.3	Variational Method and Helium Atom.			
	4.4	Variational Method and Helium Atom.			
	4.5	Pauli Exclusion Principle. The periodic Table and Aufbau Principle			

	5.1	Ionization Energy and Electron Affinity. And Angular Momentum of many-electron atoms		
	4.2	Atomic Term Symbols		
5	5.3	Atomic Spectra and Selection Rules.		
	5.4	Atomic Spectra and Selection Rules.		
	5.5	The Born-Oppenheimer Approximation		
	6.1	The Hydrogen Molecule Ion. Calculation of the Hydrogen Molecule Ion		
	6.2	Molecular Orbital Description of the Hydrogen Molecule		
6	6.3	Electron Configuration of Homonuclear Diatopmic Molecules.		
	6.4	Hückel Molecular Orbital Theory.		
	6.5	Hückel Molecular Orbital Theory.		
	7.1	Basic Ideas of Spectroscopy.		
	7.2	Vibrational-Rotational Spectra of Diatomic Molecules		
7	7.3	Vibrational-Rotational Spectra of Diatomic Molecules		
	7.4	The Boltzmann Distribution law. The Partition Function.		
	7.5	. Thermodynamic Quantities from the Partition Functions.		
	8.1	Revision, exams and Eid vacation		
8	8.2	Revision, exams and Eid vacation		
Ŭ	8.3	Revision, exams and Eid vacation		
	8.4	Revision, exams and Eid vacation		
	8.5			

• Teaching methods include: Synchronous lecturing/meeting; Asynchronous lecturing/meeting

• Evaluation methods include: Homework, Quiz, Exam, pre-lab quiz...etc

23 Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	Period (Week)	Platform
LIW/#1		Topics covered in		Will be sent by
H W #1	10	weeks 1 and 2	First 2 weeks	email
Midtorm ovom		Topics covered in		
Midterin exam	30	weeks 1-4	First 4 weeks	LMsystem
1019/#2	10	Topics covered in		
HW#2		weeks 5 and 6	6 week	By email
Final exam	50	All covered topics	8 week	LMsystem
	l	1		1

24 Course Requirements (e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

Computer and internet connection

25 Course Policies:

A- Attendance polices: According to the University of Jordan Regulations

B- Absences from exams and submitting assignments on time: According to the University of Jordan Regulations

C- Health and safety procedures: According to the University of Jordan Regulations

D- Honesty policy regarding cheating, plagiarism, misbehavior: According to the University of Jordan Regulations

E- Grading policy: Hw#1 10%

> Hw#1 10% Midterm exam 30 % Final exam 50%

F- Available university services that support achievement in the course: E-learning, the university of Jordan website

26 References:

A- Required book(s), assigned reading and audio-visuals:

R. Silbey, R. Alberty and M. Bawendi, *Physical Chemistry*, 4th edition. John and Wiley and Sons, Inc., 2005.

B- Recommended books, materials and media:

 L. Pauling and E. B. Wilson, <u>Introduction to QUANTUM MECHANICS</u> <u>with application to chemistry.</u> New York, Dover Publications INC, 1985.
John P. Lowe and Kirk A. Peterson, <u>Quantum Chemistry</u>, 3rd edition. Elsevier Inc, 2006.
Donald A. McQuarrie, <u>Quantum Chemistry</u>. California, University Science Books, 1983.
Ira N. Levine, <u>Physical Chemistry</u>, 5th edition. New York, McGraw-Hill, 2002.

27 Additional information:

Name of Course Coordinator:	Signature:	Date:
Head of Curriculum Committee/Department:	Signature:	
Head of Department:	Signature	:
Head of Curriculum Committee/Faculty:	Signatu	ure:
Dean:	- Signature:	